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ABSTRACT

The class of mathematical programming problems whose range is
in euclidian n-space but whose domain is an abstract space is
considered. A duality theory is presented that relates the
constrained maximization problem considered as a function of
its right-hand side to the associated Lagrangian maximization
problem considered as a function of the Lagrange multipliers.
The analysis leads to useful computational procedures.

The constrained maximization problem as a function of its
right-hand side is

P(y) = Sup H(z)
G(z) <y
zeS ’

where S 1s an arbitrary set, H(z) a functional dcfined on
S , G(z) a vector of functionals defined on S , and y 1is
a vector in euclidian J-space., The assoclated Lagrangian
maximization problem as a function of the Lagrange multipliers

L(u) = Sup {H(z) - v + [G(z) - d]}
zeS

where u 1s a vector in euclidian J-space and d 1is the
specific value of y for which the solution of the
constrained maximization problem is sought,

Various conditions for a strong duality, in the sense that

Sup P(y) = Inf L(u)
ysd u2o0

are presented. The duality results and some regularity
properties of the functions P(y) and L(u) are used as the
basis for computational procedures. Dual and primal-dual
algorithms for concave programs are given,

Finally, some of the theory presented is applied to the
problem of optimal adjustment of the capacity of a firm,
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CHAPTER 1

INTRODUCTION

1.1 RESULTS TO BE PRESENTED

In this paper we consider the class of mathematical programming
problems whose range is in euclidian n-space but whose domain of definition
is an abstract space. The motivation for including abstract spaces in the
analysis is to obtain results for the infinite dimensional spaces of
economic interest as well as the usual mathematical programming problems
in euclidian n-space. In fact, it was the consideration of an economic
problem that gave rise to some of the theory to be presented. The term
"decomposition programming” is employed to emphasize the role played in
the analysis by the Lagrange multipliers, which historically have been
associated with decomposing large-scale programs into subprograms of
more reasonable size. Further there is a very close connection, which will
be developed in the text, between the computational procedures to be
presented and Dantzig's [10] decomposition algorithm for concave programs.

We will extensively investigate the relationship between the
constrained maximization problem considered as a function of its right-
hand side and its associated Lagrangian maximization problem considered
a5 a function of the Lagrange multipliers. Our analysis attempts always
to take that direction that gives insight into new and existing computa-
tional procedures. The constrained maximization problem considered as

a function of its right-hand side is
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P(y) =Sup H(z)
(1.1-1) G(z) <y

zeS

where S is an arbitrary set, H(z) a functional defined on S, G(z)
a vector of functionals defined on S , and y is a vector in euclidian
J-space. When y takes on a specific value, say y = d , then (1.1-1)
is merely the usual constrained maximization problem. The associated
Lagrangian maximization problem considered as a function of its lLagrange
multipliers is
(1.1-2) L(u) = sup (H(z) - u [G(z) -d]} w30

ze$S
where u 4is a vector in euclidian J-space.

When y 1is specified and S 1is a set in euclidian n-space, the
conditions under which a solution to (1.1-2) yields a solution to (1.1-1)
are given in the familiar Kuhn-Tucker [19] saddle point theorem. These
conditions have been generalized by Hurwicz [17) to the case were § {s
a set in a linear space. However, establishing the optimality conditions
and developing algorithms to satisfy them are two entirely different
problems.

In the development of nonlinear programming algorithms, when §
is a set in euclidian n-space, an ;xtremely important role has been played
by the duality theory of Wolfe [29) and others. This theory assumes that

S 1s an open set and that the functions are differentiable; then the

"dual" problem becomes

hh ittt ——L T8 bt v NP —




Min {H(z) - u « G(z))

c (1.1-3) VH(z) - u * 96(z) = 0

u>0 zeS.

However, as (1.1-3) is not generally a convex program even when (1.1-1)
is appropriately a concave program, the role of the "dual" problem has
been a passive one. That is, in the course of most nonlinear programming
algorithms '"dual" feasible points are constructed which are used to |
bound the primal objective function and thus act as a termination criteria.

Alternat ively, vhern S 1s a set in euclidian n-space, a much less
emphasized related problem has been considered by Huard [16), Falk (13},
and Takahashi [27]. Falk refers to the following as the "auxiliary
problenm"
(1.1-4) Inf L(u)

u>0

where L{u) is defined in (1.1-2). Huard [16], assumes that L(u) 1is

differentiable and then shows that a solution of (1.1-4) yields a solution

of (1.1-1) directly. He also gives an algorithm for solving (1.1-4)
in this case, Falk [13], assumes that H(z) 1s strictly concave, then
demonstrates that L(u) must be differentiable, and hence that a
solution of (1.1-4) yields a solution of (l.1-1). Takahashi [27], is
concerned only with equality constraints but obtains results similar to
those of [13]. He further considers linear programming problems and
develops a decomposition algorithm that 1is remarkably similar to that of
Balas {3].

For the case where S 1s an abstract space, computational recults

are not very plentiful. Everett [12] has developed the generalized Lagrange

L e
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multiplier method to solve (1.1-1), when S is an arbitracy set, using (1.1-2).

However, his method is a heuristic one and requires a complete search of the
entirc Lagrange multiplier space. This dilemma has been partially alleviated
by Brocks and Geoffrion [8) as they have shown that Everett's Lagrange multi-

pliers may be generated by linear programming; and in fact, the technique is

essentially that of Dantzig's [10] decomposition algorithm for concave programs.

However, Dantzig [9] had already shown that this technique could be used for
programs defined on an abstract space by applying it to the linear optimal
control problem.

In this paper we present a unifying theoretical foundatioa, and associated
computational procedures, for the concepts introduced above. In Chapter 2 we
derive many of the properties of the functions P(y) and L(u) . L(u) is
shown under rather weak assumptions to he a convex continuous function of u

for all u > 0 . Then assuming that P(y) is a concave program, the behavior

of the resources utilized as a function of their associated Lagrange multipliers

is shown to be regular. A conjugate duality theory relating P(y) and L(u)
is then presented. The theory is related to the work of Rockafellar [23];
however, the proofs rely on well-known resulte in the literature. Further,
some of the conditions obtained are not demonstrable by the usual separation
arguments. The theory is such that any point that is classically "dual"
feasible in the sense of Wolfe [29] is also dual feasible in our sense. How-
ever, our dual problem is always a convex program, is defined without reference
to differentiability, and is meaningful for abstract spaces.

In Chapter 3, we employ the theoretical results of Chapter 2 to develop
a dual algorithm. This algorithm is shown to be the logical dual of Dantzig's
[10] decomposition algorithm for concave programs. Dantzig's algorithm is
then extended to a primal-dual procedure which it is argued should improve

the convergence properties of the algorithm. Finally, some nonconvex problems

may be handled by the dual algorithm and these are pointed out.
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Since an economic problem was the impetus for some of the theoretical

results presented, in Chapter 4 we formulate an economic example for which

the theory is applicable. The problem, first posed by Arrow, Beckmann and

Karlin [1], is the op;imal adjustment of the capacity of a firm. We formulate
a rather complicated version and then use the notion ¢f a homothetic production
function, due to Shephard [24], to reduce it to a more workable form. The
example inéicates that fairly complex problems may be handled by the algorithms

proposed, if efficient techniques are available for the solution of the

Lagrangian subproblems.

e .
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1.2 FORMULATION OF THE CONSTRAINED MAXIMIZATION PROBLEM

We will consider the following rather general formulation of a
structured program defined on the product of a finite number of arbitrary
sets. For applications these sets will always be subsets of some

topological space. The problem specifically is

(1.2-1) Max | H*(zX)
keK
(1.2-2) T 65" < ¢ jed
keK J J
(1.2-3) ' 2* ¢ s* s kek.

The index sets J = (1,2, ..., J} and K= (1,2, ..., K} are finite.

Sk, k ¢ K are arbitrary sets not necessarily in Euclidian n-space.

k

4
dJ)c EJ is a given vector in Euclidian J-space. Throughout,

Hk(zk) and G (zk), j € J are functionals defined on Sk, and

d =~ (dl’ oxadcly
functionals will always be real-valued; but the Sup of a functional may be
infinite. Topological spaces will always be real linear topological spaces.
Finally, 1f S is said to be a convex set, it will be understood that we

mean a convex subset of a linear space. For convenience, we will often use
the following notation
Max H(z)

(1.2-4) G(z) < d
zeS

to simplify the writing of (1.2-1), (1.2-2) and (1.2-3). It will be under-

stood that the two systems are identical.

A convenient interpretation of the above formulation is in terms of the

so-called cell problem. Sk is then the set of allowable strategies in the

e e a =




kth cell. Hk(zk) is the payoff from utilizing strategy zk € Sk in the
kth cell, G?(g) is the amount of the jth resource consumed by utilizing

k k h

g ¢S 1in the kt cell., (If G:(zk) is negative, it can be thought of

as the amourt of the jth resource produced.) | G:(zk) < dj Jeld
keK

requires that the amount of resources utilized be bounded above by the

available resources. The problem is then to choose that set of strategies

1. o v zK) € S1 X .00 X SK that maximizes the total payoff without

(z
exceeding the available resources. The cell problem received its name from
considering the associated Lagrangian maximization problem.

(1.2-5) L) =Sw] § G5 - ) c?(zk) - 4,)
kekK jed keK

By interchanging the order of summation and noting that the problem is
defined on the product space, (1.2-5) can be evaluated by solving subproblems
over the individual cells of the form

(1.2-6) @) = sup (H%) - uy c‘j‘(zk)} k€K

. csk jeJ

and noting that

(1.2-7) Lw = § Y+ ] uyd,
keK jeJ
Note that 1if Sk for k € K are convex polyhedral sets in Euclidian
n
spaces of appropriate dimension, say Sk CE : for k ¢ K, and Hk(zk) .

Gk(zk) for § ¢ J and k € K are linear functions, we have the familiar

3
structure of a decomposition linear program. However, the optimization
techniques to be presented are basically for convex programming problems

as the additional special structure present in linear programming problems

is not utilized.




1.3 THE OPTIMALITY CONDITIONS

We will state without proof the well-known results concerning necessary
and sufficient optimality conditions for functional programming on general
spaces. These conditions are the obvious gencralization of the familiar
Kuhn-Tucker conditions [19]). The proof may be found in Hurwicz [17] by

specializing his theorems V.1 and V.3.1.

Theorem 1°

(1) Suffieiency
Let S be an arbitrary set, H(z) a functional defined on S ,
G(z) a vector of functionals defined on S , and u and d
vectors in Euclidian J-space, EJ . If there exists

a -

ze¢eS and u > 0 such that

(1.3-1)  H(z)-u* [6(2)-d]2H(2)~u" [G(2)-d)2H(2)-u" [G(2)-d]

Yuzo Vzes

then ; is optimal for the constrained maximization problem
(1.2-4).
(11) Necessity

Let S be a convex set, H(z) a concave functional defined
on S, G(z) a vector of convex functionals defined on S ,
and u and d vectors in Euclidian J-space, EJ . In order
that ; be optimal for the constrained maximization problem
(1.2-4) 1t is necessary that there exist u 20 and u, € El

u, 0 such that

(13-2) u H(z)-u* [6(2)-d] 20 H(z)-G- [6(2)-d]2u H(z)-G+ [6(2)-d]

Vu 0 V z¢8

>
-
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Further, if there exists some z° such that

(1.3-3) 6(z°%) < d

then u > 0 and (1.3-2) reduces to (1.3-1) by dividing by {

uo; and in this case

(1.3-4) .

"
oclcl
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CHAPTER 2

THEORETICAL FOUNDATIONS

2.1 THE LAGRANGIAN MAXIMIZATION PROBLEM

The purpose of this chapter is to develop some of the important
relationships between the usual constrained maximization problem and the
associated Lagrangian maximization problem. The former will be considered
as a function of its right hand side and the latter as a function of the
Lagrange multipliers. In this section no assumptions concerning continuity
or convexity are made. The constrained maximization problem (1.2-4) as a

function of its right hand side is

P(y) = Sup H(z)
(2.1-1) G(z) <y

zeS
where the domain of definition of the function P(y) is
(2.1-2) Y={y|y26(z),z¢€S, P(y) >-=} .

S 1s an arbitrary set, H(z) a functional defined on S , and G(z) a
J-dimensional vector of functionals defined on S . The associated
Lagrangian maximization problem, with y = 0 , is
(2.1-3) L (u) = Sup {H(z) - u * G(2)} ux0
2e$S

where u ¢ EJ is a vector in Euclidian J-space. Throughout, functionals
will always assume real values.

The following theorem is a minor extension of the "Main Theorem'" of

Everett [12| and relates the solution of the Lagrangian maximization

problen to a particular constrained maximization problen.
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Theorem 2:

1 ' Let S be an arbitrary set, H(z) a functional defined on S , and
|

G(z) a vector of functionals defined on S . If z(u) solves the

? Lagrangian maximization problem for some u 20, i.e.,
{
¥ (2.1-4) HGE@®) - 5 * CEE)) = Max{H(z) -y G(z)}

zeS

then E(G) is optimal for the following constrained maximization

problem i
Max H(z)
(2.1-5) G(z) ¢y
zeS
vhere
y, =G, (z(u)) 1if wu, >0
(2.1-6) L 3
Yy 2 Gj(z(u)) if = 0
Proof:

Since z(u) maximizes the Lagrangrangian for u 20 by (2.1-4), we have

H(z(u)) - u * [G(z(UW)) - y] 2 H(z) - u * [G(z) -y] VzesS.

Further, since z(u) is feasible for G(z) < y by (2.1-6), we have

for u>0.

H(z(u)) - u + [G(z(u)) - y) > H(z(u)) - u - [G(z(u)) - y] V us>0.

>
x=.

Hence we have satisfied the sufficient conditions of Theorem 1, Section
(1.3), and thus z(u) solves the constrained maximization problem.
Using Theorem 2, we can now show that solving the lLagrangian
maximization problem defines a linear supporting function of the con-
strained maximization problem considered as a function of {ts right hand

side, 1.e., P(y) .
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Definitions:

(1) r©_(x) =w + x+1_(0) is a linear supporting function of
I x x
€

F(x) at some x ¢ T , where T 1s the domain of definition

of F(x) , if

(2.1-7) 7_(x) = F(x) and
X

(2.1-8) "_(x) > F(x) V xeT
X

(11) 7_(x) =w * x+ v _(0) is a linear bounding function of
x X
F(x) » where T 18 the domain of definition of F(x) , if

(2.1-9) m_(x) 2 F(x) V xeT
x

1 Theorem 3:

| Let S be an arbitrary set, H(z) a functional defined on S ,
and G(z) a vector of functionals defined on S . If z(u) solves
the Lagrangian maximization problem for some u >0, i.e.,

: H(z(u)) - u - G(z(u)) = Max{H(z) - u - G(z)} ,
z€$S

then

T (y) =uy+L ()
y

i is a linear supporting function of P(y) at ; €'Y where

yy = Gj(z(u)) if uy >0

yj e Gj(z(u)) if u, =0

b




= 29

Proof:

Sup{H(z) - u + G(z)} = LO(G)
2€$S

or equivalently
H(z) ¢ u - G(z) + LO(G) V zeS.
Consider z(u) defined above such that
H(z(u)) = u - G(z(u)) + L _(u)

P(y) =Sup H(z) _=H(z(u)) =u * y+ LO(G) .
G(z) <y
zeS

The above holds with equality by Theorem 2. Hence, we have that

P(y) =u - y+ LO(G)

and we now must show that

(=9 ]

P(y) gu*y+L(u) VyeY.
Consider arbitrary y ¢ Y . Since

H(z) < u -t G(z) + LO(G) V z2¢5§,

we can unite

P(;) = Sup H(z) . ¢ Sup{u * G(z) .+ Lo(ﬁ)} < u . ; + LO(G)

G(z) ¢y G(z) gy
z2¢eS z €S

vhere the last inequality holds since u >0 . Noting that y €Y

is arbitrary, we have the desired result that

13

—
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P(y) su - y+ LO(G) VyeX.

ience n_(y) = u-y+ Lo(ﬁ) is a linear supporting function

y -
of P(y) at yeY.

If the Sup 1s not attained in the Lagrangian maximization problem,
then u ° y + L(u) only defines a linear bounding function of P(y) ,

i.e.,
(2.1-10) U y+Lu2Py) VyeY.

We now demonstrate Lo(u) is a convex and continuous function of

u for all u > 0.

Definition:

A function F(x) , defined on a convex set I , is convex if for

xl, x2 el and 0<a<l

(2.1-11) Fa x* + (1-a)x%) < o F(x1) + (1-0) F(x?) .

Theorem 4:

Let S be an arbitrary set, H(z) a functional defined on S ,
and G(z) a vector of functionals defined on §$ . Then Lo(u)

is convex in u for all u > 0.

Proof:

To show L(u) convex, let ul, u2 e {u]u 20} and 0 <a<1
1 2 1 2
Lo(u u’ + (1-a)u”) = Sup{H(z) - (a u” + (1-a)u”) - G(z)}
zeS

= SuplalH(z) - u} * G6(2)] + (1-a)[H(z) - u? - G(2)])
zeS




< Sup alH(2) - ul -+ G(2)] + sup (1-a)[H(z) - v* + G(2)]
zeS ze$S

Lo(a u1 + (1-a)u2) <a Lo(ul) + (1-a) Lo(uz) .

Hence Lo(u) is convex in u for all u > 0.

Definitions:

(1) A functional F(x) on a topological space T 1is lower semi-

continuous if the level set
(2.1-12) {x | F(x) < a)

is closed for each real a .
(11) A functional F(x) on a topological space I is upper semi-

continuous 1f the level set
(2.1-13) {x l F(x) > al
is closed for each real a .

Note that if a functional is both lower and upper semi-continuous

it is continuous.

Theorem 5:

Let S be an arbitrary set, H(z) a functional defined on S ,
and G(z) a vector of functionals defined on S . Then Lo(u) is

continuous in u for all u 2 0.

15
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Proof:

By the theorem due to Gale, Klee, and Rockafellar [15), a convex
function is upper semi-continuous on a convex polytope. Since the
set {u | u > 0} , on which Lo(u) is defined, is a convex polytope,
we need only show that Lo(u) is lower semi-continuous on this set.

Assume that for some real a the level set,
{x | L () ¢ o)

is not closed. Then there exists a sequence {u"} > & such that

Wwefulu >0} Yn and
* L (") ga<L@ Vn.
However,

L (") = Sup{H(z) - u" + G(2)} ,
(o]
ze$S

or equivalently

Lo(un) 2 H(z) - u” - G(z) VzeS.

Since {un} +u, for n sufficiently large, say n > N, we have

‘ Lo(un) > H(z) -u * G(z) V 2¢S, n>N
| and hence
! L (u") > Sup{H(z) - U + G(2)} = L(@) V n >N

2eS

which is a contradiction of (*). Hence, Lo (u) 1s lower semi-continuous

in u for all u > 0, which is the desired result.
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2.2 CONTINUITY OF THE RESOURCE UTILIZATION FUNCTIONS

One difficulty in employing Lagrangian optimization techniques is the
discontinuous behavior of the resources utilized as a function of their
associated Lagrange multipliers. However, in the case of the convex program

these discontinuities can be completely described.

Definition:

The amount of the jth resource utilized as a function of the Lagrange
multipliers is Gj(E(u)) where the vector G(z(u)) of such functions
is given by
(2.2-1)  HEM)- u * G(z(u) = Hax{}l(z) -y G(z)}.
zeS
We now introduce convexity assumptions not previously made and prove the
well-known result that a concave program is a concave function of its right

hand side.

Definition:

A functional F(x) defined on a convex set T 1s (strictly) concave

if for xl,xzcl" and 0 <a <1

(2.222)  Flax'+ (1-a) x)) FaF(x) + (1-a) F(x) .

Theorem 6:

Let S be a convex set and G(z) a vector of convex functionals
defined on S . If H(z) 1s a (strictly) concave functional defined
on S , then P(y) is a (strictly) concave function defined on

Y = {y | y 26G6(2), ze S, P(y) > - =},

Proof:

Let yli yz € Y and define ya = Q yl + (1_3)},2 ,
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where 0 <a <1 . Let zl, 22 and z° be optimal solutions to

(2.1-1) corresponding to yl, y2 and ya respectively. Since z1

and 22 are feasible and G(z) convex, then for O gax 1 we have
G(a z1 + (l-a)zz) < a G(zl) + (1-a) G(zz) < a y1 + (l-a)y2 2

Hence a z1 + (l-u)z2 is feasible for P(a y1 + (l-a)yz) , but not

necessarily optimal. Thus
H(z) > H@a 25 + (1-0)zd) .
If H(z) (strictly) concave then

Hz®) > H(a 2z} + (1-0)z%) > a H(z)) + (1-0) H(zD)
()

Thus P(a yl + (1-a)y2) > a P(yl) + (1-a) P(y2) .
)

Using Theorems 3, 5, and 6, we now demonstrate that under the usual
convexity assumptions, if one or more of the resource utilization functions
are 7 _scontinuous at some u ,» then we are in fact on a linear segment of the
function P(y) . Further, if the objective function of the constrained max-
imization problem is strictly convex, then the resource utilization functions

ure continuous., Hence, the following two theorems.

Theorem 7:

Let S be a convex set, H(z) a concave functional defined on S ,

G(z) a vector of convex functionals defined on S , and let the indicated
Max exist for u € {u | u 20} N N(u) , where N(u) 1is a neighborhood

of u . If some Gj(E(u)) is discontinuous at u , where the vector

G(z(u)) of such functions is defined by
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H(z(u)) - u * G(z(u)) = Max{H(z) - u * G(2)) ,
ze$S

n -
that is, there exists a sequence {u } +u as n -+ « such that

Lim inf G(z(u")) = ; $y = Lim sup G(z(™))

n-+*o n -+ o
then for 0 < a <1,

P(ay + (1-a)y) = a P(3) + (1-9) P(y).

Proof:

n n
ﬂyn(y) =y y + Lo(u )

is a linear supporting function of P(y) at yn = G(E(un)) by Theorem

3. as (W} u , Lo(un) -+ LO(G) by Theorem 5, thus

n.(y) = (y) =u-‘y+ LO(E) .
y y

Hence, u 'y + LO(G) is a linear supporting function of P(y) at

both y and y , but y # ; by the assumed discontinuity of some

Gj(;.(u)) at u. For 0 <ac<l,
a:u -y + LO(G) = P(y)
(1-a): u ° ; + LO(G) = P(;)

Thus, u(a y + (1-a)y) + LO(G) = a P(y) + (1-a) P(y) and by the
concavity of P(y) , implied by Theorem 6 and the concavity of H(z) ,

we have

M 8 Y+ o)y + L@ <Pay+ U-a)y)

4 | , i'
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Now since u 'y + LO(G) is a linear supporting function of P(y)

G-y+L°(G)_>,P(y) VyeyY.

(a0 y + (1-a)y) € Y , since G(z) 1s a vector of convex functions and

S 1s a convex set. Hence
80 @y + )y + L@ 2Py + (1-a)y)
which, with (*), implies
B ey + Qwy) 4L @) = P+ (1))
ali * 5+ L @) + (-3 * y + 1L @] = P(a  + (-a)y)

a P(y) + (1-a) P(y) = P(a ¥ + (1-a)y) .
Theorem 8:

Let S be a convex set, G(z) a vector of convex functionals defined

on S , and let the indicated Max exist for wu ¢ (u | u > 0} n N(u) ,

where N(u) 1s a neighborhood of u . If H(z) 1is a strictly concave

functional defined on S , then G(z(u)) , defined by

H(z(u)) - u * G(z(u)) = Max {H(z) - u * G(2)} ,
2¢eS

is a vector of functionals continuous at u .

Proof:

Since H(z) 1is strictly concave, H(z) 1is also concave and the

nypothesis of Theorem 6 is satisfied. Therefore, if some G (z(u))

3

- n -
is discontinuous at u , that is, there exists a sequence {u'} »u

such that




(4]
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lim inf G(z(u")) = ; ¥y=1in sup G(;(l;))

n+oe n-+e

then for 0O<cacl,

P(a y + (1-a)y) = a P(7) + (1-a) P()) .

But H(z) 1is strictly concave implies P(y) 1is strictly concave by

Theorem 6 and thus for y ¢y

Pay + (1-a)) > o P(y) + (1-0) P(y)

wvhich is a contradiction. Hence 6(z(u)) is a vector of functions

continuous at u .
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2.3 CONJUGATE DUALITY THEOREMS

In this section we join the present trend toward a gencral symmetric
duality theory and present three computationally useful duality theorems,
the proofs of which rely on well-known results in the literature. In order
to avold complicating the presentation with existence considerations, we will
for the present employ Sup and Inf instead of Max and Min. The constrained

maximization problem will be called the primal problem.

(2.3-1) Sup H(z)
G(z) < d
zeS

The feasible region of the primal problem is the set
(2.3-2) Zz={z|zes, G(2) <d, H(z) > - =},

The associated Lagrangian maximization problem when the right hand side of
the constrained maximization problem is explicitly included is
(2.3-3) L(u) = Sup {H(z) - u . [G(z) - d]} .
ze$S
We now introduce a related problem first treated by Huard [16] and referred

to by Falk [13] as the auxiliary problem. It will here be called the dual

problem.

(2.3-4) Inf L(u)
u > 0
The feasible region of the dual problem is the set
(2.3-5) U=f{u]|u>0, Lu <+=},
To show that (2.3-1) and (2.3-4) can indeed be considered as dual to one

another, we demonstrate the usual results concerning weak ordering of the

" objectives, existence, infeasibility, and optimality. The following theorem

Pron

Al o
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is essentially duc to Karamardian [18]; however, here the domain of definition
of the functionals is not restricted to Euclidian n-space.
For completeness we adopt the following conventions, which may in fact

be argued by contradiction.

(2.3~6) Sup H(z) = - =
zed

(2.3-7) Inf L(u) = + =
ucd

Theorem 9:

Let S be an arbitrary set, H(z) a functional defined on S , G(z)
a vector of functionals defined on S , and let Z and U be defined
by (2.3-2) and (2.3-5) respectively. Then
(1) Weak Duality

Sup H(z) < Inf L(u)

zeZ uel
(11) FExistence

If Z¢ ¢ and U ¢ ¢ then both primal and dual have finite

optimal solutions, i.e.,

- o < Sup H(z) <+ = and + « > Iaf L(u) > - =
zeZ uel

(111) Infeasibility

(a) If U¢¥ ¢ and Inf L(u) = - = , then Z = ¢
uel

(b) I1f Z ¢ ¢ and Sup H(z) = + = , then U = ¢
ze?

(1v) Optimality
If zeZ , uelU, and H(z) = L(u) , then H(z) = Sup H(z)
2¢7
and L(u) = Inf L(u)
uel




24

S

Proof:

(1) Consider any z ¢ 7 and u e U
Sup{u(z) -5 - [62) - d]}- L(5)
zeS

Since the Sup is not necessarily attained at z , we have
H(z) - u + [G(z) - d) < L(u) .
zecZ implies G(z) <d and u e U dimplies u >0 .
Therefore - u ° (G(z) - d) 2 0 and hence
H(z) < H(z) - u - [6(2) - d] g L(u)
Since z €2 and u ¢U are arbitrary we have

Sup H(z) < Inf L(u)
zel uel
(1) For any z €2 and u ¢ U , we have from (i) and the definitions

of Z and U that - = < Sup H(z) < Inf L(u) < L(u) <+ =
ze$S uel

+® 5 Inf L(u) > Sup H(z) > H(z) > - =
uel ze$

(111) Follows immediately from (ii) by contradiction
(iv) Using (i) and the fact that z and u may not be optimal for the
primal and dual respectively, we have
H(z) < Sup H(z) X InfL(u) < L(u)
zeZ uel
But since H(z) = L(u) , equality must hold throughout which 1is the

desired result.
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In order to obtain the strong duality result that the objective
function of the primal is, under the appropriate assumptions, equal to the
objective function of the dual, we will employ some of the general minimax
theorems due to Sion [26) and Fan [14]). However, first we must prove a
minor extension of a lemma due to Karamardian [ 18], Here again the domain

of definition of the functionals is not restricted to vuclidian n-space.

Lemma 10:

Let S be an arbitrary set, H(z) a functional defined on S , and

G(z) a vector of functionals defined on S . If K, and K, are

1 2
defined by
Kl ={u,z| zeS, H(z) -u + [G(z) - d] = Inf {H(z) - v * [G(z) - d]}
v:O
K2 = {u, 2z | zeS,u20, G(z) <d, u - [G(z) - d]) = 0} ,
and the set {z | z € S, G(z) < d} 1is not empty, then K; = K, .
Proof:

(1) Show Kl C KZ

Let (z, u) € K, be arbitrary. Hence 2z ¢ S, u >0 and

H(z) - u * [6(2) - d) = Inf (H(Z) - v - [G(z) - d]}

v20
which implies
(*) 0<(-v) - [G(z) -d] V v>0.
Hence GJ(E) < dj V jeJ, since 1f not, setting

v, = u when G, (z) < d and

3 3 ] 3
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v, > u, when G(§)>d1.

i i b
leads to a contradiction of (*). Finally, u >0 and G(z) <d
imply u * [G(z) - d) <0, and letting v = 0 in (*) we have
u - [G(z) ~d) 20 ; hence u* [G(z) -d] =0 .

z. u C
Therefore (z, u) ¢ K2 and Kl K2 .

(o
(11) Show K2 Kl

Let (z, u) ¢ K2 be arbitrary. Hence z ¢ S and
H(z) - u * [G(z)-d]=H(z)gH(z) -v - [G(z) - d] Vv >0 .
Or equivalently,

H(Z) - u * [G(z) - d) = Inf H(z) - v * [G(z) - d], since u > ¢ .
V:o -

Therefore (z, u) ¢ Kl and K2 c Kl .

(1) and (i1) d1mply Kl = l(z .

We may now prove the following duality theorems. Euclidian J-space
has the usual tovology throughout, and S has an unspecified topology in

Theorems 11 and 12, while it is merely a convex set in Corollary 13.

Definitions:

(1) A functional F(x), defined uon a convex set T , is8 quasi-convex on T

if for xl,x2 el and 0 <a <1
(2.3-8)  Flax} + (1 - a)x%)< Max [F(x1), F(xD)]

(i1) A functional F(x), defined on a convex set I , 1s quasi-concave on

2
r if for xl,x el and 0 < a <1

(2.3-9)  Flax! + (1 - a)x%) > Min [F(<D), FxD)] .
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Theorem 11: Duality Theorcm (1)

Let S be a convex, compact subset of a topological space and
H(z) - u * [G(z) - d] a functional defincd on S x {u ¢ EJ | u> 0},
quasi-concave and upper semi-continuous in z for all u > 0 . Then
Sup H(z) = Inf L(u)

G(z) <d u0
zeS

Proof:

Sinie H(z) - u ¢ [6(z) - d] {is linear and continuous in u
for all z ¢ S , it is quasi-convex and lower semi-continuous
v u for all =z ¢ S . Noting that H(z) - u * [G(z) - d]) 1is
quasi-concave and upper semi-continuous on S for all u >0
and that S 1s compact, we have satisfied the conditions of
Sic;\'sf minimax theorem [26), and we have
(*) Sup Inf{H(z) - u * [G(z) - d]} = Inf Sup{H(z) - u * [G(z) - d]} .

z:S u20 u20 zeS
The right-hand side 1s by definition the dual problem; and applying
Lemma 10, the left-hand side reduces to the primal problem. Hence
when the primal problem is feasibie, we have

Sup H(z) = Inf L(u) i
G(z) <d w0
z ¢S

If the primal problem is infeasible due to S = ¢ , then the desired

result is immediate from (2.3-6). Otherwise,

See Lemma A of Appendix A for a statement of Sion's theorem.
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1f there does not exist a primal fcasible solution, then

Inf {H(z) -~ u * [G(2)]) = - » Yz es
u>0

which implies that Inf L(u) = - = by (*); and
u>0

noting equation (2.3-6), the proof is complete.

We define the graph of the function P(y) as the set

(2.3-10) Y uty oy |y, < Py)

recalling that

(2.3-11) P(y) = Sup H(z)
G(z) <d
zeS
and
(2.3-12) Y= (y |y 2G(z), z €S, P(y) » - w} ,

Theorem 12: Duality Theorem (ii)

Let S be a convex space, H(z) a concave functional defined on S , and

G(z) a vector of coavex functionals defined on S . If Y° » the graph

of P(y), is closed then

Sup H(z) = Inf L(u)
G(z) <d u>0
z2eS

Prcof:

Since the graph of P(y) 1s closed and convex, it has a support at
every boundary point. Hence if the primal problem has a feasible solution
it has an optimal solution. By the necessary conditions of Theorem 1,

Section (1.3), if z ¢ S is optimal for the primal problem then there
1

y U >0 such that

exists u>0 and u ¢ E

_ . _1

U I T —



u H(z) - u " [G(z) - d]) > u, H(z) - u * [G(z) - d] >
Vi >0

> u H(z) - J « [6(2) - d) ,
e VzeS

Equivalently,

Inf {u H(z) - u * [G(z) - 1]} = Sup {u_ H(z) - u - [G(z) - d])
u>0 2 z¢S °

a -

which, noting that z and u are particular values, implies

Sup Inf {u H(z) - u * [G(z) - d]} >
o
zcS q;O

> Inf Sup {u H(z) - u - [G(z) - d}} .
u>0 ze$ 9

If u, > 0 , we can divide by Uy and applying Lemma 10 to the lcft hanc

side and the definition of L(u) to the right hand side, we have

Sup H(z) 2 Inf L(u) .
G(z) < d u>0
zeS

Noting the weak duality of Theorem 9(i) equality must hold which is

the desired result. If u, = 0, let u, =€, and by the same argument,

Sup H(z) = Inf L(E> = Inf L(v) = Inf L(v)
G(z) ¢ d w0 ev>0 v20
zeS

Hence, 1if the primal problem is feasible the theorem holds. If the
primal problem is infeasible due to S = ¢ , then the desired result is
immediate from (2.3-6). Otherwise we can take u arbjitrarily large in

L(u) = Sup {H(z) - u * [G(2) - d]}
2€$S

since for any z € S an infeasible primal implies G,(z) > d, for some

h| h|
3 eJ . Hence Inf L(u) = - = and noting equation (2.3-6), the proof is
u>0
complete. )
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In mathematical programming it is customary to define Max and Min
over the extended real line; that is, the points +» and =-= are

permissable. Furthermore, it is always tacitly assumed that the primal

problem (2.3-1) may be written with Sup replaced by Max. However, these N
conventions are not sufficient to replace Inf by Min in the dual problem as .
Slater's [17) famous counter-example points out. To insure that Sup and

Inf may be replaced by Max and Min respectively in the above duality theorems,

we must assume a constraint qualification. Noting the previous proof and

|
the necessary conditions of Theorem 1, we get the following expected result. !

Corollary 13: Duality Theorem (iii)

Let S be a convex set, H(z) a concave functional defined on S ,

and G(z) a vector of convex functionals defined on S . If there

exists on optimal solution to the primal problem and 2° such that

G(z°) <d , then

Max H(z) = Min L(u)
G(z) < d u20
zeS$

If there exists an optimal solution to the primal problem and a nonempty
interior of the constraints, then Sup and Inf may be replaced by Max and }Min
respectively throughout this section, except in the definition of L(u) .

If the Sup is always attained, which is the case if S 1is compact, then Sup
may be replaced by Max also in the definition of L(u) . For further
comments on the existence of L(u) , see Section (2.4).

Theorem 11 gives rather weak conditions on the functionals for a strong
duality theorem, as will be brought out in Section (3.4) on Nonconvex
Considerations. However, the condition of compactness of S 1s not always
satisfied. When § 1is not compact and the primal is a concave program with

closed graph, Theorem 12 says that a similar strong duality theorem holds.
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For completcness of the theory, we note the following corollary,
which is an immediate consequence of any of the duality theorems and of

equations (2.3-6) and (2.3-7).

Corollary 14: Unboundedness

Under the assumptions of Duality Theorem (i), (ii), or (iii) i
(i) If U=¢ and Z ¥ ¢ then Sup H(z) = 4
zel
(11) 1f Z=¢ and U ¥ ¢ then Inf L(u) = -
uel
We may characterize the duality theory presented as a conjugate duality
by remarking that if the graph of P(y) is closed L(u) defines a linear
supporting function of P(y) . For emphasis, the conclusions of the duality
theorems may be stated
Sup P(yy = Inf L(u)
y<d u>0
Finally, we should point out the rclationship of our duality with that
of Wolfe [29]. If S 4s an open sct in Euclidian n-space, H(z) a concavc
differentiable function defined on S, G(z) a vector of convex differenti-
able functions defined on S , then a necessary conditfon for a maximum or a

minimum of

(2.3-14) H(z) - u * [G(z) - d]
is that the gradient 1is zero, i.e.,

(2.3-15) 9H(z) - u * vG(z) =0 .

Recalling the wual problem of wolre {29],
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(2.3-16)

Min H(z) - u + [G(z) - d) ,
VH(z) - u * 96(z) = 0

u 0 z¢eS

>
<

we note that whenever L(u) 1is evaluated, where

(2.3-17)

a feasible solution of (2.3-16) is determined.

(2.3-17)

is always a convex program, is defined without reference to differentiability,

L(u) = Sup{H(z) - u * [G(z) - d])
ze$S

Inf L(u)
u>0

and is meaningful for abstract spaces.

iv

However, our dual problem
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2.% EXISTENCE AND GEOMETRICAL CONSLDERATIONS

Since L(u) = Lo(u) +u.d, we know from Theorems 4 and 5, L(u)
is convex and coatinuous in u for all u > 0 . This, coupled with the
duality results of the previous section, suggests a computational procedure
based on solving the dual in place of the primal problem. However, two
questions remain to be considered. When does a solution for the dual yield
a solution for the primal, and how 1s L(u) evaluated when the Sup is not

attained? The following theorem partially answers the first question.

Theorem 15:

Let S be a convex set, H(z) a strictly concave functional defined
on S, and G(z) a vector of convex functionals defined on S . 1f
u solves the dual problem (3.2-4) and the graph of P(y) is closed,
then z(u) given by

H(z(W) - u + [6(z(v) - d] = Max {H(z) - u * [G(z) - d])

zeS

solves the primal problem (3.2-1).

Proof:

By Theorem 3, u * y + Lo(u) 1s a linear supporting function of P(y)

at y = G(z(u)) . Hence
u * G(z(u)) + L, (u) = P(G(z(u))) and
(*) u'y+L°(u)_>=P(y) VyeY={y | y>6(z), z ¢S5, P(y) > -=)} .

Further, since u solves the dual problem and the graph of P(y) {is
closed, we have by Theorem !. that
P(d) = Sup H(z) = Inf L(u) =u *d+ LO(G) :

G(z) < d u>0
zeS
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Now, assuming that z(u) does not solve the primal problem, we have
G(z(u)) ¢ d .

Hence we may write the following string of inequalities; the first of
which follows from the strict concavity of P(y) implied by the strict

concavity of H(z) by Theorem 6.

P(a G(z(u)) + (1 - a)d) > a P(G(z(W))) + (1 - a) P(d)
=u ' [a G(z(u)) + (1 - a)d] + L, ()

2 P(a G(z(u)) + (1 - a)d)

The last inequality follows from (*), and exhibits a contradiction.

Hence z(u) must solve the primal problem.

If H(z) 1s only concave and u solves the dual problem, z(u) does
not necessarily solve the primal problem. However, the regularity properties
demonstrated in (2.2) make it possible to construct an optimal solution for
the primal. An algorithm for this is given in Section (3.2).

The second question, concerning when the Sup is attained, is in practice
rather easily avoided. Evaluating L(u) 1s itself an optimization problem
for which termination conditions to within some preassigned ¢ > 0 are
necessary for all but extreme point techniques that terminate in a finite
number of steps. The following theorem demonstrates that i1f we are within
€ of the true value of L(u) then we are within ¢ of the optimal value

for the associated constrained maximization problem.

Theorem 16:

If z 4s within € > 0 of the optimal solution of the Lagrangian

maximization problem for some u >0 , i.e.,

H(z) - u + [G(z) - d] + € 2 Sup(H(z) ~ u * [G(2) - d]} = L(W)
zeS




then z is within ¢ > 0 of the optimal solution of the associated

e nstrained maximization problem, i.e.,

H(z) + ¢ 25up  H(z) _
G(z) < G(2)
z ¢S

Proof ;"

H(z) - u * [G(z) -d} + ¢ > Sup{H(z) - u -+ [G(z) -d]}
2¢$S

Hence H(z) - u * G(z) + ¢ > H(z) - u + G(2) Yz ¢S
or equivalently

(*) H(z) + € > H(z) +u - [C(z) - G(2)) YzeS

Since (*) holds for all 2z ¢ S , it must hold for any subsct of

particular

S = {z ]| 6(z) <6(2), z ¢ S}

Noting that wu ;:0 , we have on the set §

u + [6(2) - G(2)] >

v
o
-
N
m
wl

and hence H(Z) + ¢ H(z) Vzebt

v

or equivalently

H(Z) + ¢ 2 Sup H(z) _
G(z) < G(2)
z ¢S

Hence, even though the Sup may not be attained in the definition of

L(u) , any optimization technique used to evaluate L(u) that comes within

1-
This proof is due to Everett [12].
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¢ of the Sup is sufficient for computational purposes.
Finally, if we are to solve the convex dual problem in place of the
primal problem, it will be useful to know the gradient of L(u) at u

if it exists, or at least a subgradient if it does not.

Definition:

A vector w is a subgradient of a function F(x) at x in

r , where T 1s the domain of definition of F(x) , if there

exists a scalar 7w_(0) such that
x

(3.4-1) 7 (x) =w . x+ n_(0)
x x

is a linear supporting function of F(x) at X .

Theorem 17:

[d - G(z(u))] is a subgradient of L(u) at u , where

G(z(u)) 1s defined by

H(z(u)) - u + [G(z(u)) - d] = Max{H(z) - u « [G(z) - d]} ;
zeS

and it is assumed that the indicated Max exists for u .

Proof:

L(u) = Sup(H(z) - u + [6(z) - d]} = H(z(u)) - u + [G(Z(uw)) - d]
z€$S

2H(z) -u - [6(z) -d] V zesS

Hence, in particular,
L(u) 2 H(z(@)) - u + [G(z(W)) - d]

or equivalently

v ——




37

-L(u) < u * [G(z(u)) - d) - H(z(W)) V u

which implies that there exists 1n_(0) such that

u
h ' [6(z(u)) - d) + u+ n_(0) 1is a linear supporting function of
u

-L(u) at u . Hence [d - G(z(u))] is a subgradient of

L(u) at u.

If the indicated Max does not exist for u , then there does not exist
a support of P(y) with gradient u . However if z comes within ¢ of

the optimal solution, i.e.,

; (3.4-2) H(z) - u ' [G(2) - d) + ¢ > Sup{H(z) - u * [G(z) - d]}

i zeS
i
then [d - G(z)] can be used as an approximate gradient.
i
3
I
i 1
i

ey

e a
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CHAPTER 3

COMPUTATIONAL PROCEDURES

3.1 THE DECOMPOSITION ALGORITHM FOR CONCAVE PROGRAMS

The algorithms based on the theory presented in the previous chapter
are very closely tied to Dantzig's [10] decomposition algorithm for concave
programs, often referred to as generalized programming; and a certain
familiarity with this work will be assumed. However, a brief sketch of the
important concepts is in order as the convergence of this algorithm will be
assumed. In our notation, the problem treated by Dantzig is

Max H(z)
(3.1-1) G(z) < d

zeS

where S 1s a convex compact space, H(z) a concave upper semi-continuous
functional defined on S , aud G(z) 1is a vector of convex lower
semi-continuous functionals defined on S . Actually, Dantzig restricts S
to be a subset of Euclidian n-space and the functionals to be continuous.
However, the first restriction is unnecessary for his proof, as he himself
points out in [9]); and the secornd may be weakened since a lower semi-continuous
function is bounded below on a compact set.

The technique used to solve (3.1-1) is a generalization of the simplex
method for linear programming in which the coefficients for a column may be
merely points drawn from a convex set. Consider the following generalized

linear program in the variables Ao and s , which is equivalent to (3.1-1).

Max yoxo

y Xo + Is = d

o)
!
rv

il
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where (yo, y) is a J+ 1 dimensional vector drawn from the convex set
o 1
(3.1-3) Y =y, ) |y, W),y 206, zc¢cS).

To initiate the computation, we assume we have a nondegencrate basic feasible

solution to (3.1-2), 1.e.,

(3.1-4) | 2 € S such that G(;o) <d.,

Using the Simplex multipliers u associated with this basis, the usual
pricing out mechanism becomes the following optimization problem,
(3.1-5) L(u) = Max {H(z) -~ u * [G(z) - d)} = H(z) - u - [G(z) - d] .

zeS
Hence a new point [G(E), G(z)) € Y is generated and a new basis and asso-
ciated simplex multipliers, optimal with respect to the points generated thus

far, may be calculated; and the procedure continues. The algorithm may be

stated as follows.

Algorithm 1: Decomposition Algorithm for Concave Programs

Step (0) Let R(O) = {0} be an index set whose only element is
associated with ;o defined in (3.1-4). lLet B be an upper
bound on the objective function; and set B = and n =0 .

Step (1) Solve

R(u(n)) = Max 2 H(;r) Xr

rcR(n)
e ¥ G,z ) A cd Fel
(n)
oA =1
rcR(n) .
Ar 20, re R(n)

YIhis definition of Y° {s equivalent to (2.3-10).
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ylelding an optimal solution x(“) and associated optimal

(n -
simplex multipliers u ) . Define z(n) = Z z Ain)
rcR(n) r

Step (2) 1f B - R@w™) < ¢, stop.
Step (3) Solve the Lagrangian maximization problem

L (u(n)) = Max JH(z) - u(n) ¢ [G(z ) - d]
° ze$S

yielding ;n . Set B = Min [L(u(n)), B) and define the

index set by

R(n+1)

R(n+1) = R(n)U{n}.

Set n=n+1, and go to Step (1) .
If a nondegenerate basic feasible solution is not initially available,
a Phase I procedure that minimizes the degree of infeasibility in the
constraints can be used to generate one. In this event, steps (1) and (2)
are at first replaced by steps (1') and (2').

Step (1') Solve

Q™) = Max - ! n

jed J
ZG(;)A-n;d JeJ
reR(“) Jrr h | h|
I -1
r
rcR(n)

Atlo,rcR(n)njg_O jeld
ylelding an optimal solution (A(n), n(n)) and associated
optimal simplex multipliers n(n) . Define
™ . ) zam

r€R rr
(n)
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Step (2') If Q(u(n)) = 0 , end Phase I and go to Step (1) .

The theorem shown by Dantzig [10] is

Theorem 18:

Let S be a convex compact space, H(z) a concave upper semi-continuous

functional defined on S , G(z) a vector of convex lower semi-continuo.s

~

functionals defined on S , z an optimal solution to the primal

(n)

problem (3.1-1), and let {u } be the sequence of multipliers

generated by Algorithm 1. If there exists ;o € S such that G(Eo)< d ,

then
(3.1-6) 1m o™ oo
n-oree
(3.1-7) lim H(z(n)) = Max H(z)
n-e G(z) < d

ze S
(3.1-8) H(z) - u * [G(z) - d] = Max:H(z) - u - [G(2) - d]
zeS
The generalized programming technique is based upon the fact that a
convex set can be represented by a convex combination of a sufficiently
derse set of the extreme points of the set. Step (3) of the algorithm
evaluates L(u) which, by Theorem 2 of Section (2.1) and the compactness
of S defines a linear supporting function of
(3.1-9) P(y) = Sup H(2)
G(z) <
zeS
and hence an extreme point of the set Y’ . The algorithm essentially builds
up a convex gpolyhedral set within the convex set Y®. At ecach iteration, the
optimal solution over the polyhedral set is found in order to obtain simplex

multipliers which are then used to generate another extreme point of o
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and the procedure continues. Since the optimal value of the primal objective
function is bounded above by L(u) , being within ¢ of the minimum value

of L(u) generated thus far is used as the termination criteria. The
algorithm is referred to as a primal method in our terminology as it works
entirely within the convex set Y° and merely uses the dual as a bound.
Further, a primal method is a two phase procedure that first generates a

feasible solution and then an optimal solution.

In the statement of che algorithms in this chapter, if S {is compact
we will replace Sup by Max in the primal problem and in the definition of

L(u) . However, the constraint qualification is required to replace Inf by

Min in the dual.

i
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3.2 A DUAL ALGORITHM

In the previous section, we characterized a primal algorithm as cne that
depends on the fact a convex sct may be represented by a sufficiently dense
set of its extreme points. We now consider the logical dual of these tech-
niques and characterize a dual algorithm as one that depends on the fact that
a convex set may be represented as the intersection of all supporting hyper-
planes. While a primal algorithm works entirely within the convex set Y° h

vhere
{(3.2-1) Y° = {yo, y | ¥ H(z), vy > G(2), z ¢ S} ,

a dual algorithm works entirely outside the convex set Y® . Recall that
the dual problem is

(3.2-2) Inf L(u) ,
u>0

==

where the function L(u) {s given by

(3.2-3) L(u) = Sup H(z) - u " [G(2) - d]{.
z€$S

Also, whereas a primal method {= a two phase procedure, a dual method moves
simultaneously towards feasibility and optimality.

By Theorems 3 and 4 of Section (2.1) we know that L(u) {s a convex
continuous function of u , for all u >0 . Further, in Section (2.4), it
was shown that whenever L(u) {s evaluated at some u a subgradient of

L(u) at u 1is also determined. Thus we want to minimize a convex continuous

function, for which at least a subgradient i{s readily available at every
point, subject only to nonnegativity restrictions on the variables. This
would seem to imply that a straight-forward gradient descent technique

)

would be efficient. Huard [16] first and then Falk[13] have proposed this

approach; however, in both papers L(u) {is essentfallyv assumed differentiable.
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The difficulty arises from the fact, pointed out in Section (2.4), that the
primal solution ;(;) associated with an optimal solution of the dual may
not be feasible if L(u) 1s not differentiable at u. Therefore, any
proposed algorithm that solves the dual problem in order to solve the primal
must also construct an optimal feasible primal solution.

We first give a gradient descent algorithm for solving the dual problem.
Then for those problems where the solution ;(;) associated with the optimal

dual solution is not primal feasible, a perturbation algorithm is given that

constructs a primal feasible solution. The algorithm for the dual is

Algorithm 2: Gradient Descent Algorithm

step 0) set u@ wto, L) msa, D

(n))

«=0,and n=1,

(n)

Step (1) Compute L(u and & . . udient of L(u) at u by

solving the Lagrangian maximization problem

L(u) = Max JH@) - o . [c(z) - d)
zeS

yielding an optimal solution ;(u(n)) 5

Step (2) 1f L(u(n)) < L(u(n-l)) , then define

3 I 3

0 1f ¢, (2(™))<d, and u™=0

s™ . {d - 6,Gw™) 1£ 6, Gu™12 4 or ufVs0
3

i 3

If 6§“) = 0 , STOP.
i

! Determine a new set of Lagrange multipliers by

u(n+1) - u(n) -0 G(n) where 6 1s a scalar such that

u(n)
0<6<Min‘3.—1—|6(n)>0
- l §§n) h|

and 8 1s the maximum step size. Set n=n+ 1 and go to

Step 1.
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Step (3) If O < L(u(n)) - L(u(n-l)) <¢ and | u(n) - u(n_l)l <6,
where ¢ and 6 are preassigned numbers, then STOP. Other-

wise, set 0 = 6/2 and go to Step (1).

Theorem 19:

Let S be a convex compact space, H(z) a concave functional defined
on S, G(z) a vector of convex functions defined on S , and let
(u(n)} be the sequence of multipliers generated by Algorithm 2,

If there exists z € S such that G(z) <d , then

(3.2-4) 1 0™ = g
n-+>w
(3.2-5) 1im L(u(n)) = Inf L(u)
nse u20

Proof:

L(u(n)) is a strictly decreasing sequence of real numbers bounded from

below by the primal objective function, which must be finite since z,

is primal feasible; hence L(u(n)) converges. The sequence {u(n)}
converges to u , since termination takes place only if 6(n) =0 or

(n) - u(n-l) | < § , one of which must occur since L(u) 1is a con-

| u
tinuous function of u for all u > 0 by Theorem 4. Assume, for the
purpose of contradiction, that L(u) is not optimal for the dual.

Then let

(z(w)) 2 d, or u, >0

§ =(d, - G,(z(u)) 1f G 3 3

i 3 3

-

0 1f cj(E(G)) <dy and uy = 0

where &8 ¢ 0 , since we would then be optimal. Consider u - 8§ .
By the convexity of L(u) and the termination of the algorithm, we

have




BT TR T T

46

(1) 0> L(u) - L(u - 08) > 06 -+ D - G(z(u - 88))]) ;

and by the definition of &6 , we have

(i1) eS[D - 6(z(u))) > 0

L(u)

(G - 68) u u

Hence a subgradient at G is positive and a subgradient at ; - 68

is negative. This implies that there exists a point in-between with
a subgradient of zero. Hence either L(;) is optimal to the dual or
there exists 8 such that L(; - 88) < L(;) and the algorithm would
not have terminated, which is a contradiction.

1f ; is an optimal solution to the dual problem such that 3 =0,

then by the definition of §

-~

(3.2-6) 1f uj >0 then Gj(z(u)) - dJ

1f cJ(;(G)) <d, then u = 0.

Therefore, 8 = 0 implies that ;(G) is a feasible solution to the
primal problem, and hence optimal by Theorem 9(iv) Section (2.3). However,
if ;(;) is not a feasible solution to the primal, then essentially a Phase I
type procedure must be instituted. The following perturbation algorithm will

construct the desired optimal feasible solution to the primal.

’




Algorithm 3:

Step (0)

Step (1)

Step (2)

Step (3)

Step (4)

Given u , the optimal dual solution resulting from Algorithm

2, and z(u) 1its associated primal infeasible solution, let

R(O) = {0) be an index set whose only element is associated
with z(u) . Set u(o) =u and n=0.
Solve

Q(u(n)) =Max - § n

jed 3
rcg G, (z)r_ - n,<d jed
myd T J J
A =1
ek, e
Ar > 0, re R(n), nJ 20, JeJ

and associated

(x(n)'n(n))

optimal simplex multipliers "(n) . Define z(n) = Z 5 2 (M)

z
rcR(n) rr

yielding an optimal solution

1f Qu™) -0, stor.
(n)

Otherwise, Q(u' °) < 0 and determine new Lagrange multipliers

by u(n+1) = u(n) + en(“) where 6 1s in the interval
ALY

O<9_<_Min§5,—j— "(n)<0
ﬂjn) h]

and 0 1s an upper bounded on the step size.

Solve

L(u(“))- Max {H(z) - u(“) - [6(2) - d]}
2¢€$S

yielding an optimal solution ;n . If




0 < L(u(n)) - L(u) < ¢ , then define the index set R
< (n+1)

by R(n+1) - R(n)U {n} and go to Step (1). Otherwise,

set 6 = 6/2 and go to Step (4).

Theorem 20:

Let S be a convex compact space, H(z) a concave upper semi-
continuous functional defined on S , G(z) a vector of convex lower
semi-continuous functionals defined on S , and let {u(n)} be the

sequence of multipliers generated by Algorithm 3. Then

Proof:

(3.2-7) 1im Q™) = 0
n->e
If at each iteration we set u(n) - “(n) , the algorithm reduces to a

Phase 1 generalized program and such a procedure converges by Theorem
18. However, by Theorem 11 of Section (2.3) and the fact that ;
is an optimal solution for the dual, we have

P(d) =Sup H(z) = Inf L(u) = L(u) ,
(*) G(z)<d ux0

z¢eS$

and hence that the primal optimal must occur on a hyperplane whose
gradient 1is ; . Algorithm 3 is merely a Phase I generalized program,
restricted to the intersection of the hyperplane defined by (*) and
Yo , and it converges by Theorem 18, Section (3.1) if an extreme
point of this set is generated at each iteration. Steps (3) and (4)
construct the necessary extreme point in a finite number of steps by

the continuity of L(u). Hence the procedure converges and

1m Q™) =0 .

ne e
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3.3 A PRIMAL-DUAL ALGORITHM FOR CONCAVE PROGRAMS

One of the computational difficulties with using Dantzig's decomposition
algorithm for concave programs is that at times it exhibits poor convergence
properties. Poor convergence for any particular problem is due to the shape

of the convex set Y° for that particular problem. Recall

(3.3-1) Y® = {yo, y | Vs <H(z), y 2 6G(z), z ¢ S} .

The duality theory presented in the previous chapter has the geometrical
property that for a particular vector of Lagrange multipliers u , if the
associated primal solution is not unique and therefore on a linear segment,
then the associated dual solution is pointed; and vice-versa. Hence, when-
ever one method exhibits poor convergence properties, the other should not
have these difficulties. Therefore it is believed that a primal-dual method
will overcome any of the poor conyergence properties that either nethod might
exhibit independently.

The following algorithm is a combination of the primal and dual
algorithms presented. At each iteration, an extreme point of the set °
is generated using the optimal gimplex multipliers for that iteration.
Then, instead of returning to the linear program as in Algorithm 1, a
gradient descent step on L(u) 1is performed. Hence, a second extreme point
of the set Y° 1is generated, and finally the procedure returns to the lincar

program *¢ compute new simplex multipliers.

Algorithm &4 Primal-Dual Algorithm for Concave Programs

Step (0) Let R(n) = {0} be an index set whose only element is
associated with ;o defined in (3.1-4)., Set B = o and

n=20.
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Step (1) Set flag = 0 and solve

Ru™) = Max ] H(z )\

rcR(n)

Z G,(z)\ <d Jeld
rcR(n) j 3

I oA -1
rcR(n)

Ar 2 O, re R(n)

yielding an optimal solution X(n) , and associated simplex

multipliers u(n) . Define z(n) - Z Zri .
rcR(n) r

Step (2) 1f B - R(u(n)) <e¢ , STOP.
Step (3) Solve
Lw™) = Max H(z) - '™ ¢ [6@) - 4]
ze$S
yielding ;n . Set B = Min [L(u(n)). B] and if B = L(u(n)),
set u = u(n) and z(u) = ;n' Define the index set R(n+1)

by Rigy) = Ry Y in} . If flag = 1 , then go to Step (1).

Step (4) Define

ng) - {dj - GJ(E(G)) 1f Gj(;(ﬁ)) 24, or GJ >0

0 if cj(E(G)) < dj and Gj =0 .

Determine a new set of Lagrange multipliers by

u(n+1) -y - eé(“) where 0 1s a scalar such that

ow;um{é,—-}— 5(“)>o}
s@® |

3

and © 1s the maximum step size. Set flag = 1, n=n+1,

and go to Step (3).
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If there does not exist an initial nondegenerate basic feasible solution,
as defined in (3.1-4), then a Phase I procedure can be used which is also a
primal-dual algorithm. In this event, steps (1) and (2) are at first
replaced by steps (1') and (2') of Section (3.1)., Alternatively, only dual
steps might be performed until a feasible solution is generated. This
eliminates the Phase I procedure and has an intuitive appeal since the dual

algorithm moves simultaneously towards feasibility and optimality.

Theorem 21:

Let S be a convex compact space, H(z) a concave upper scmi-continuous
functional defined on S , G(z) a vector of convex lower semi-continuous
functionals defined on S , ; an optimal solution to the primal problrm
(3.1-1), and let {u(n)) be the sequence of multipliers generated by

Algorithm 4. 1If there exists ;o € S such that G(Eo) <d , then

(3.3-1) 1im o™ o g
n-»>o
(3.3-2) lim H(z(n)) = Max H(z)
n-e G(z) < d
z ¢S

(3.3-3)  H(z) - u * [G(z) - d] = Max{H(z) - u * [G(z) - d]}
z€e$S

Proof:

Since the algorithm finds two extreme points of the set Y® at each
iteration of the decomposition algorithm for concave programs, it must

converge by Theorem 18,
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3.4 NONCONVEX CONSIDERATIONS

In the previous sections of this chapter the emphasis has been on
relating the dual algorithm presented here to Dantzig's decomposition
algorithm for concave programs. However, by Theorems 3 and 4 of Section (2.1),
we have that L(u) 4s a convex continuous function of u for all u > 0 ;
and this result does not explicitly depend on the nature of the set S, aronthe

properties of the functionals H(z) and G(2) defined on S . Hence the

dual problem

(3.4-1) Inf L(uw) ,
u>0

where L(u) 1is given by

(3.4-2) L(u) = Sup (H(z) - u * [G(z) - d]},
ze$S

may be solved in place vf the primal problem even when the primal is not a
concave program. Since evaluating L(u) defines a linear supporting
function of P(y) , assuming the graph of P(y) is closed, if it can be

shown that the solution of the primal problem is on the convex hull of

(3.4-3) Yo = {)’oo y | yO ~ H(z), y :c(z)l z € S} ’

then, noting Theorem 12 of Sectio:n (2.3), the dual algorithm may be used

to produce this solution.

For that particular nonconvex problem that satisfies the conditions of

Theorem 11, Section (2.3), we have the following much stronger result.




Theorem 22:

Let S be a convex compact space, H(z) - u « [G(z) - d] a
functional defined on S x {u | u 2 0} , quasi-concave and
upper semi-continuous in z for all u > 0, and let (u(n)}

be the sequence of multipliers generated by Algorithm 2,

Section (3.2). Then

(3.4-3) lim u(n) - ;
n-Hn
(3.4-4) 1m L™) = Inf L)
ne u>0

Further, if there exists ;o € S such that G(Eo) <d ,

then the Inf is always attained and may be replaced by Min.

53
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CH _TER 4

DYNAMIC ECONOMIC PLANNING

4.1 THE OPTIMAL ADJUSTMENT OF THE CAPACITY OF A FIRM

As indicated in the introduction, an economic problem gave rise to the
more general results presented in this paper. Therefore, in this chapter
we formulate an economic example for which the theory is applicable. The
particular problem was chosen because it has been considered by others, is
relatively straight-forward to explain, and emphasizes the dynamic nature
of the policies of a firm. It was the desire to actually compute these
dynamic policies for the firm under nontrivial assumptions that motivated
the theory presented.

We will consider a multi-divisional firm where each division produces
a separate commodity. Further, we will assume that the production structure
is separable in the sense that the policies of one division only effect
the policies of another through demands for the same resources [7]. If
none of the firm's resources are binding then the policies of the different
divisions are completely independent. For simplicity, we assume that the
production structure of each division can be represented by a homothetic
production function with an analytic form, and that storag. is not allowed.
(See Appendix B for definitions and examples of homothetic production
functions.) In general the problem to be considered is, given the demand
for each commedi:y as a function of time, determine the capacity of a firm
to meet this demand as a function of time subject to budgetary and other

resource constraints.

Let Ek(t) , defined for t ¢ [0, T} , be the demand at time t for the
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kth commodity of the firm; aad assume £k(t) is continuous and has a finite
number of relative maxima in the interval (0, T} . Let yk(t) , defined for

t ¢ (0, T) , represent the capacity of the firm at time t to produce the

th commodity, and let vk(t) , defined for t ¢ [0, T) , be the actual

h

k
level of production at time t of the kt commodity. Since storage is nct

allowed for this simple model, we have
(4.1-1) vt) < Min G*@0) , ) kex.

Letting Fk(ok(x)) be the homothetic production function for the kth commodity,
a nonnegative vector xk(t) of inputs at time t can produce a nonnegative

th commodity at time ¢t if and only if

amount vk(t) of the «
(4.1-2) Fekaken) > v ke,

Assuming the supply of inputs is not restrictive, the net production income

for the kth division at time t (sales revenue less production costs) is
given by
(4.1-3) e V) - ) 4okt ke k

where the selling price of the kth rersrodity rk and the vector of purchase
prices of the inputs p are assumed ~onstant. Further, assume that we can

increase capacity at a positive cost proportional to the rate of increase, i.e.,

(4.1-4) *ykwe 15 Yoo,

fSee Appendix B for this representation of a homothetic cost function and note

that F1(.) 4 £() .
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and decrease capacity at a salvage value proportional to the rate of

decrease but less than or equal to the cost of an equivalent increase, il.e.,

(4.1-5) yk ck §k(t) 1 ;k(t) <0 and 0 < yk <1

Hence the present value of the income of the firm for all commodities over

the tine interval (0, T) 1is given by

T
(4.1-6) ) / trk ey - PR *okw)
keK 0

- e [seRen « va - s )] et ae

1 if 2 >0
(4.1-7) where 6(z) =

0 if z <0

and a 1s the interest rate.

The problem is then to choose the capacity function y(t) , with the initial

capacity y(0) and the time horizon T known, that maximizes (4.1-6)

subject to (4.1-1) and some typical constraints. For example,

(4.1-8) ¥ < v* e <M ¢ ¢ [o,1) k e K
T
’f (4.1-9) ] f [ 30 [s6%e) + v*a - s en]] et ar 5 .
kek
0

! Relation (4.1-8) bounds the rate at which we may change the capacity and

(4.1-9) bounds the expenditures on these changes in capacity by a glven budzet.

If we now let z(t) = '(t) so that

S Sga—
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(4.1-10) y(t) = y(0) +]‘ z(s) ds
0
we can summarize the problem formulated above as follows:

Example 1

T
(4.1-11) Max /’rk vy - PRp) t* Ry -
keK 0

-k zk(t)lé(zk(t)) + ya - 6(zk(t)))] L
subject to
st - zk,vk Lk s zk(t) < Mk te 0, T) } keK

o
A

< vE(t) < Min (yk(O) +sz(s)ds, Ck(t))

e-at dt < B .

T
) ’ck 2X(¢) [G(Zk(t)) + ya - c(z“(t))]
kekK 0

The above example only has one global constraint, the budget constraint.
Thie convenient formulation depends upon the assumption that the available
inputs are not restrictive and thus the minimum cost function at time t for
the kth commodity does not depend explicitly on xk(t) :

We will now complicate Example 1 by allowing the input space to be
bounded. We add constraints for those factors of production that are limited

in supply. iet I = {1, 2, ..., I} be the index set of these factors.

T

(4.1-12) ) / k) ae g 11
keK =
0

e S — i e




+ 1 if the ith resource is consumed by the kth process
(4.1-13)  where a: = (-1 {1f the ith resource is produced by the kth process
0 otherwise.

Defiring a: in this manner allows for producing some commodities that are

inputs in the production of other commodities. Thus we can summarize the

extended problem as follows:

Example 2
T
.1-16) Max § % VR - pexkee) - K [G(zk(t)) + Yk(l-é(zkt)))]‘e-atdt
keK 0
subject to
Lk < zk(t) < Mk te [0, T)
0 < x*(t)
k )k x
82732 XV o < v < PR AL
v(t) < Min (5%(0) +sz(r) ds, £5(t))

k k 0
a, xi(t) dt < X, 1el

e_atdt < B.

ck zk(t) [6(zk(t)) + Yk(l—G(zk(t))]
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4.2 APPLICABILITY OF THE THEORY

In order to demonstratce that the theory is applicable, we need only
verify that the conditions of the theorems of Chapter 3 are satisfied,
We will assume that the strategies under consideration in both examples arc
chosen from the space L2 consisting of numcrical functions g defined

on [0, T] (to within a set of measurc zero) with norm defined by

T b
2
(4.2-1) g|] = / lg(t)|“dt| < + = .
0
It is well known that L2 is a complete normed linear space and thus a
Banach space.+ Since L2 is also reflexive, we can use the weak* topologv

on L2 , under which the strategy sets will be compact.

We will first consider Example 1. The strategy sets St,k € K are convex

by the following lemma.

Lemma 23:
The set
S, =}z, vJL < z(t) < M t e [0, T)
1 = = t
0 g v(t) < Nin(y(O) + { z(s)ds, E’s))

is convex in (z, v) .

Proof:

The first constraint is linear in 2z and the second is linear in v .

Therefore, we need only show that

+See Berge [ 6] p. 252.
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Min (y(O) +Z. z(s)ds, €(t))

is a concave function in 2z and hence

v(t) - Min (y(o) +EZ(B)“' E(t))

is a convex function. We have that y(0) +I z(s)ds 1s linear in

z and E(t) 1s constant in z . Thus Min (y(O) +‘i z(s)ds, E(t))
0

is a concave function in 2z, since the minimum of two concave functions

is concave.

To establish that the global constraint is a convex function we prove the

following lemma.

Lemma 24:

If 0 <y <1, then the capacity adjustment cost function

}{c z(t)[6(z(t)) - y(1-6(z(t))]} e“(Ilt dt is comvex in 12 .
0

Proof:

The result is easily seen by graphing the indicated function for

fixed t as follows:
o ¢ 2(8)[8(z(t)) - v(1- (2(1)))]

c

— Z(t)

yc

Since e.at >0vt, the integral of interest is convex in =z .

TR TR VT INSN RN N R T T e g
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The objective function of Example 1 is concave in (z, v) since the total

income is the sum of the net production income

T
(4.2-2) 3 [ ke - P k] e ae
chvo

which is concave in vk if fk(vk) is convex in vk. and the negative of

the capacity adjustment cost function

T
(4.2-3) - L 16 ) + Yo a-s @) ™ at

keK 0.

which is corncave in zk by Lemma 15.

In Example 2, we have strategy sets S: k ¢ K that differ from those
of Example 1 only by the nonnegativity restriction on xk(t) and the

production constraint which is convex by the following lemma.

Lemna 25:
If f(v) 1is a convex increasing function in v and ¢&(x) 1is a
concave function in x , ther
v(t) - F(o(x(t)))

is a convex function in (v, x) .

Proof:

Since f(*) 4s the inverse of F(') by definition and f(°) 1is a

convex increasing function, F(°) 1is a concave increasing function.
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A concave incveasing transformation of a concave function is
concave,lr and thus F(¢(x(t))) 1s concave in x and v

v(t) ~ F(¢(x(t))) 1is convex in (x,v) .

Hence the atrategy sets s: are convex in (zk, xk, vk) » ke K. The
additional global constraints in Example 2 on the factors of production that
are limited (4.1-12) are convex since they are linear in xk « Finally, the
objective function is concave since it is linear in xk and vk , and
concave in zk by Lemma 24.

The last condition to verify for the tlieorems of Chapter 3 is that the
maxima of the Lagrangian subproblems is taken on for all u > 0 . However,
as this depends on the solution technique employed, we will consider this i
point in the next section. First, we will show the subproblems for Example 1
and Example 2 can be considered to have the same structure. The Lagrangian .

subproblems for Example 1l are

(4.2-4) Max z{r“ Vi) - Py ok -

e-':’t dt

- (@ aap Ko [seko + vFa-saien)

subject to
‘ SI{ - zk, vlf Lk < zk(t) ;Mk t e [0, T]

o
A

< vk(t) < Min (yk(O) + Z zk(s)ds, Ek(t))

4

where u_, 1is the current Lagrange multiplier associated with the global

fSec Berge [6], Page 191.
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budget constraint. The Lagrangian subproblems for Example 2 are
(4.2-5)  Max 'Z VR - p* e XK -
- (e + ug) 2°(t) [s(z“(t)) + yk(l-d(zk(t)))] et 4t
subject to
(
S: = zk, xk, vk L"’~ _<_zk(t) ;Mk t e [0, T)
0 < x*(t)
< 0 < vh@) g FrOR ()
t
| vE(t) g Min (y"(o> + { z*(s)ds, c“(r.))

vhere p: = Py + a: u, 1el

and ; € EJ is the vector of Lagrange multipliers associated with the
constraints on the ” ‘outs, If we have formulated the problem correctly, the
optimal sclution w... be finite; and thus the optimal Lagrange multipliers
will be such that the associated ;k 2 0 . Although xk(t) is restricted
in Example 2, it is only restricted to nonnegativity in the associated
Lagrangian subproblems. Hence we may use the cost function representation

to reduce the Lagrangian subproblems “or Example 2 to

(4.2-6) Max z L vk ) - PRy ki) -

-at

- r
- (e +up M@ [ + vrassEten]] o e
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subject to
S; - zk, vk Lk < zk(t) < M t ¢ (0, T)
k k T o
0 < vi(t) < Min (y (0) + g’ 2" (s)ds, g(c))
K K -
where Py =¥, + ay uy 1el.,

Note that (4.2-6) and (4.2-4) have the same form.




4,3 SOLUTION OF THE SUBPROBLEMS

Ir. order to emphasize the alternatives presented, we will note two
solution techniques for the Lagrangian subproblems - one exact and one
approximate. For the exact technique, the strategy set will be restricted

to strategies of expansion only, 1i.e.,
(4.3-1) 0=1f <) <M vee[o,T]  kek

and the homothetic production structure will be restricted to constant

returns to scale,‘r i.e.,
(4.3-2) f(v) =v .

Noting that pk =p, + ak u, for Example 2 and letting pk = p, for
i i 14 i i

Example 1, the Lagrangian subproblems for both examples may then be written

T
(4.3-3) Max/ (- P %) V) - e+ uy Fo] e a
0
subject to
Sk = zk, vk 0 < zk(t) < Mk t ¢ [0, T]
0 < v(t) < Min(yk(O) + j'zk(s), s,k(c;)
0

if rk 4 pk(pk) , then the optimal solution to the ktn subproblem is

zk(t) =0 Vte[0, T). If rk > Pk(pk) , then the optimal solution to

the kth subproblem will be such that

+See Lemma D of Appendix B.
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(4.3-8) V&) = mn(y"(o) +Izk(s). e“(c)) t ¢ (0, T)

and (4.3-3) reduces to

T ¢
(4.3-5)  Max f {(r“ - p“(;“))um(y“w) + f % (s)ds, z“(:)) .
0 0
- (e + ;B) zk(t)} a2
subject to

Sk - {zk | o < zk(t) < Hk. te [0, T)} .

An exact solution technique for precisely this problem (4.3-5) has been
given by Arrow, Beckmann, and Karlin [1]. Their method employs a minimax
theorem and considers the following problem, which is equivalent to (4.3-5).

Max Min z {(1 - a(®)) (X - PREENE()

zkcsk ckcAk

+ a(t) (£* - r“(f:“))(y"w) +I:k(8)ds)

(4.3-6) -(c* 4+ ;,) zk(t)} P T
where
s* e (2| 0<2X® <M, o, TN
Ak-(ck|0:uk(t)_<_1, t e [0, T]} .

The strategy sets Sk and Ak are compact in the weak* topology by

k k

Alaoglu's Theorem,* and since the functional Hk(z . ak) defined on Sk x A

is linear in each variable separately, it is continuous in each in the weak*

1’See Berge [6] p. 262



topology. Hence the indicated Max in (4.3-5) exists. Therefore, the
problem of optimal capacity expansion of a multi-commodity firm with
constant returns to scale can then be handled by an algorithm proposed in
this paper with the technique of Arrow, Beckmann, and Karlin employed to
solve the subproblems at each iteration. In Example 2, the solution of
the Lagrangian subproblems must be translated into the required form if a
primal algorithm is to be employed. This is easily accomplisted, since a

vector of inputs xk(t) ylelding minimum cost at time ¢ 1is given by

=k
(4.3-7) x(e) = ey t e [0, T)
£(1)
-k _ 1
where x 1s determined by
pk §k = Min pk~x k e K.
(4.3-8) Subject to

P ) > 1,

We will now consider the approximate technique of dynamic programming
for the solution of the Lagrangian subproblems of the form (4.2-6). The
continuous demand functions Ek(t) are then replaced by discrete
approximations, with intervals rormalized to length one, and numbered in

the reverse order, such that

.{“ &k(t)dt tn
k _ _“n+l - k 3
(4.3-9) En A £ (t)dt k e K.

tn+1

fSee Lemma E of Appendix B .

67




. — E—

68

L

A typical approximation is given below where the number of intervals is
chosen by the degree of accuracy desired.

4 )

OlN N-1 N-2 4 3 2 1

If we define yt as the capacity for the kth commodity in the nth

interval, we have

(4.3-10) Yn = Yo+l ¥ Znel

where z is the adjustment that takes place in the nth interval. Letting

v: be the level of production of the kth commodity in the nth interval

and B be the discount factor associated with interest rate a , the

approximation to the kth Lagrangian subproblem {is

N -
Max ) L Pk(Pk) fk(Vk) -
o1 n n
| Kk, Ty ke kL Ko ko] D
4\ - 4 uy ReE + vra-sn) s
(4.3-11) subject to
Sk = zk, vk Lk < zk < Mk
=n=
k k _k
0 < vn < Min(yn, En)
where ; =p, + ak ; iel
i i i7i i
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k Since

(4.3-12)

Max E(t) < + = i
te[0,T)

2= 3 x

nAa

Sk is a closed bounded set in euclidian n-space; and hence Sk is compact.
Therefore, the indicated Max 1in (4.3-11) exists. The recursive

relationship used to solve the Lagrangiai subproblems 1s then

k( k) o k k k. k k( k)
“n yn Max ir vn P(p) f vn

(4.3-13) subject to

nAa
=

A
<
[
=
<
= I
gy
s x
S

where
k( k)
"o o 4 0.

This 1s a straight forward one dimensional problem that is relatively easy

to solve on a computer. Hence, both examples may be handled by the algorithr:

proposed, with dynamic programming used to approximate the solutiocs of the

Lagrangian subproblems.
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APPENDIX A

MINIMAX THEOREMS

We state here the two powerful minimax theorems employed in the

derivation of the duality theory; one due to Sion[26) and the other to Fan

(14]).

Lemma A: Sion's Minimax Theorem

Let M and N be convex topological spaces, one of which is compact,
and F(u,v) a functional defined on M x N , quasi-concave and upper
semi-continuous in u for all v ¢ N , quasi-convex and lower
semi-continuous in v for all u e M . Then

Sup Inf F(u,v) = Inf Sup F(u,v) .
ueM veN veN ueM

Lemma B: Fan's Minitmax Theorem

Let M be a convex set end N a convex compact Hausdorf space. Let
F(u,v) be a functional defined on M x N , concave in u for all
v ¢ N, convex and lower semi-continuous in v for all u e M . Then

Sup Inf F(u,v) = Inf Sup F(u,v)
ueM veN veN ueM
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APPENDIX B

HOMOTHETIC COST AND PRODUCTION FUNCTIONS

Homothetic cost and production functions were first defined by Shephard
[24) and are extensively treated in his recent work [25]). 1In this appendix,
we define the functions, give some examples, and note the properties that

are employed elsewhere.

Definition:+

A homothetic production function is one of the form F(®(x)) where
¢(x) 1is nonnegative, homogenecous of degree one, nondecreasing in x ,
upper semi-continuous and quasi-concave for all x e D = {xlxi >0 Vil;
and F(') 1s nonnegative, continuous and strictly increasing with

F(0) = 0 .

In what follows the inverse function of F(‘) , which always exists since
F(-) 1s strictly increasing, will be denoted by f(:) . The following

lemma gives the most important property of homothetic production functions.

Lemma C:

The isoquant for any output rate u > 0 of a homothetic preduction
function may be obtained from that for unit output rate by radical

expansion from the origin in a fixed ratio f(u)/f(1)

The class of howothetic production functions includes all of the production

functions commonly employed. Some examples are as follows:

fAll definitions and lemmas are taken from Shephard [25)
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Cobb-Douglas

n ai I'X\
$(x) = A 1 x A>0,a, >0, a, = r
el 1 ! =1 1
B-1
f(u) = ol/f

Arrow-Chenery-Minhag-Solow (ACMS)

21
o]
d(x) = a, x a, >0 b>~1
=1 it . i
B-2
f(u) = u
Usawa (Generalized ACMS)
1
J b, b
¢(x) = = ) a, x, ] ]
3=1 [deN,

s
, a; >0, by > -1, p, >0, ] py =1
jc
f(u) =u
The function £(*) completely discribes the returns to scale as follows.

Lemma D:

f(u) convex implies nonincreasing returns to scale, f(u) concave
implies nondecreasing returns to scale, and f(u) linear implies

constant returns to scale.
For any price direction p e D = {plpi >0 Vi} and nonnegative level

i of output u > 0, there is associated with any production function a cost

function given by
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Q(u, p) = Min px
B-4 F(o(x)) > u

xeD 5

Note that the cost function is defined for x > 0 but otherwise unrestricted.
For a homothetic production function the cost function has a more specific

form given by
B-5 Q{u, p) = P(p) f(u) .

This convenient representation for the cost function and the radial expansion

property of Lemma G yield the following useful result,

Lemma E:

If the vector x(1)produces one unit of output at minimum cost then the

vector x(u) = %{%% x(1) produces u units of output at minimum cost.

Proof:
By definition Q(u, p) = Min px = p-x(u) and for a homothetic cost
F(¢(x))2u
function Q(u, p) = P(p) f(u) . Therecfore,

LX) x()
PR) =p " F@) " P T

and hence p + x(u) = p ° £l x(1l). Therefore, the input vector

f(1)
%{%% x()) produces u units of output at minimum cost.

Corresponding to each of the examples of homothetic production functions, we

have the following homothetic cost functions:
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Cobb-Douglas

' -8 EY
n ;a i
Q(u, p) - % m (—!‘. ]ul/r
- 1=1 \P4
)
A>0 a, >0 a, = r
i =1 i

Arrow-Chenery-Minhag-Solow (ACMS)

n b, b+l
- Qu, p) =| I a (—-— ] u
B-7 [1_1 i ar)

ai>0 b>-1

o
B

Uzsawa (Generalised ACMS)

P b,+1
s b p.\ }
Qu, o) = 7 L a '—i) u
B-8 3=1 \'j 1N !
E f
a, >0, b, >-1,p, >0, p, = 1
1 | 3 =1 3




- — e e

— ey ——————r—

(1]

[2]

[3]

(4]

{5]

(6]

[7]

(8]

(9]

(10]

{11]

(12]

[13]

(14]

(15]

75

REFFRENCES

Arrow, K, J., M. J. Beckmann, and S. Karlin, "The Optimal Expansion
of the Capacity of a Firm," from STUDIES IN THE MATHEMATICAL
THEORY OF INVENTORY AND PRODUCTION by Arrow, Karlin, and Scarf,
Stanford University Press, Stanford, California, (1958).

Arrow, K. J., and L. Hurwicz, "Reduction of Constra.ned Maxima to |
Saddle Point Problems," from PROCEEDINGS OF THIRD BERKELEY SYMPO-
SIUM ON MATHEMATICAL STATISTICS AND PROBABILITY, University of !
Calif. rnia Press, Berkeley, (1956).

Balas, E., "An Infeasibility-Pricing Decomposition Method for Linear !
Programs," J. Oper. Res. Soc., Vol. 14, No. 5, (1966). |

Bellman, R., "Dynamic Programming and Lagrange-Multipliers," Proc.
Nat. Acad. Sci. U.S.A., Vol. 42, (1956).

Bellman, R., and S. Dreyfns, APPLIED DYNAMIC PROGRAMMING, Princeton
University Press, Princeton, N.J., (1962).

Berge, C., TOPOLOGICAL SPACES, Macmillan Book Company, Inc., New York,
N.Y., (1963).

Bradley, S. P., "General Production Structures and Their Related
Functions," ORC 67-8, Operations Research Center, University
of California, Berkeley.

Brooks, R., and A. Geoffrion, "Finding Everett's Lagrange Multipliers
by Linear Programming," J. Oper. Res. Soc., Vol. 14, No. 6, (1966).

Dantzig, G. B., '"Linear Control Processes and Mathematical Program-
ming," J. SIAM Control, Vol. 4, No. 1, (1966).

Dantzig, G. B., LINEAR PROGRAMMING AND EXTENSIONS, Princeton University
Press, Princeton, N.J., (1963).

Dantzig, G.B., and P. Wolfe, "The Decomposition Algorithm for Linear
Programs," Fconomcerica, Vol. 29, No. 4, (1961).

Everett, H., "Generalized Lagranpe Multiplier Method for Solving Prob-
lems of Optimal Allocation of Resources," J. Oper. Res. Soc.,
Vol. 11, No. 3, (1963).

Falk, J. E., "Theory of Lagrange Mult!pliers for Constrained Ontimiza-
tion Problems," (to appear).

Fan, K.,"Minimax Thecrems) Proc. Nat. Acad. Sci., Vol. 39, No. 1, (1953).

Gale, D., V. L. Klee, and R. T. Rockafellar, "Convex Functions on
Convex Polytopes,' Proc. Amer. Math. Soc., (to appear).




76

(16]

(17]

(18]

[19]

(20]

(21)

[22]

(23)

[24)

[25]

(26]

(27]

(28]

(29]

Huard, P., "Convex Programming--Dual Algorithm," ORC 63-21, Operations
Research Center, University of California, Berkeley,

Hurwicz, L., "Programming in Linear Spaces," from STUDIES IN LINEAR
AND NONLINEAR PROGRAMMING by Arrow, Hurwicz and Uzawah, Stanford
University Press, Stanford, California, (1958).

Karamardian, S., "Duality in Mathematical Programming,' ORC 66-2,
Operations Rescarch Center, University of California, Berkeley.

Kuhn, H. W., and A. W. Tucker, "Nonlinear Programming,'" from
PROCEEDINGS OF THE SECOND BERKELEY SYMPOSIUM OF MATHEMATICAL
STATISTICS AND PROBABILITY by Neyman, University of California
Press, Berkeley, (1951).

Mangasarian, 0. L., NONLINEAR PROGRAMMING, McGraw-Hill Book Company,
New York, New York, (to appear).

Nunn, W. R., "The Lagrange Multiplier--A Heuristic Presentation,"
Memorandum for the Director of Research, Operations Evaluation
Group, (28 September 1965).

Ritter, K., "Duality for Nonlinear Programming in Banach Spaces,"
SIAM J. Appl. Math., Vol. 15, No. 2, (1967).

Rockafellar, R, T., "Duality and Stability in Extremum Problems
Involving Convex Functions," Pacific J. of Math., Vol. 21, No. 1,
(1967).

Skephard, R. W., COST AND PRODUCTION FUNCTIONS, Princeton University
Press, Princeton, New Jersey, (1952).

Shephard, R. W., COST AND PRODUCTION FUNCT1IONS, Princeton University
Press, Princeton, New Jersey, (to appear), Chapters available
ORC 66-42, ORC 67-4, 5, 7, Operations Research Center,
University of California, Berkeley.

Sion, M., "On General Minimax Theorems," Pacific J. of Math., Vol. 8,
No. 1, (1958).

Takahashi, 1., "Variable Separation Principle for Mathematical
Programming," J. Oper. Res. Soc. of Japan, Vol. 6, No. 2, (1964).

Van Slyke, R., and R. Wets, "Progranming Under Uncertainty and
Stochastic Optimal Control," J. SIAM Control, Vol. 4, No. 1,
(1966).

Wolfe, P., "A Duality Theorem for Nonlinear Programming,"
Quart. J. Appl. Math., Vol. 19, No. 3, (1961).

i .




Unclassif ied
Security Classification

DOCUMENT CONTROL DATA - R&D

(Secueity clasailication af title, body of abatract and indexing annctation must be entered when the overali repott 1s classilied)

1 ORIGINATING ACTIVIYY (Corporate author) 2a RCPORY SECURITY C LASSIFICATION

Unclassified

University of California, Berkeley

2b GROUP

3 REPORT TITLE

DECOMPOSITION PROGRAMMING AND ECONOMIC PLANNING

4 DESCRIPTIVE NOTES (Tvpe of report and inclusive dates)
Research Report

S AUTHOR(S) (Last name. first name, Initial)

BRADLEY, Stephen P.

& REPORT DATE 74 TOTAL NO OF PAGES 7b. NO OF REFS
June 1967 76 29
8a CONTRACT OR GRANT NO. 98 ORIGINATOR'S REPORT NUMBER(S)
Nonr-222(83
(B ORC 67-20
b PROJECTY NO.
NR 047 033
c 95 OTHER REPORT NO(S) (Any other numbers thal may be assigned
this report)
. Research Project No.: RR 003 07 01
d
10 AVAILABILITY/LIMITATION NOTICES
. Distribution of this document is unlimited.
11 SUPPLEMENTARY NOTES Also supported by 12 SPONSORING MILITARY ACTIVITY

the Nat'l.Sci.Found. under Grant
GP-7417, and the U.S. Army Res. Office-
Durham under Centract DA-31-124-AR0O-D-331.

MATHEMATICAL SCIENCE DIVISION

13 ABSTRACT

SEE ABSTRACT.

DD |'.|9:=- 1473 Unclassified

Security Classification




°
Unclassified
Security Classification
R AP R T '
14 LINK A LINK B LINK C
KEY WORDS ROLE wT ROLFE wT ROLE wt
= < =

Nonlinear Programming
Programming in Abstract Spaces

Theory of the Firm

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contructor, subcontractor, grantee, Department of De-
fense activity or other organization (comorate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘“‘Restricted Data' is included Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complcte report title in all
capital lctters. Titles in all cases should be unclessiiied,
If a nicaningful title cannot be selected without classifica-
tiun, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If eppropriate, enter the type of
report, e.g., interim, progress, summary, an-ual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middle initial,
If xilitary, show rank and branch of service. The name of
the principal aithor is an absolute minimum requirement.

6. REFORT DATZ: Enter the date of the report as day,
month, year, or month, ysar. If more than one date appesrs
on the report, use date of publication.

7s. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

76. NUMLER OF REFERENCES: Enter the total number of
telercnces cited in the report.

84. CONTRACT OR GRANT NUMB™ R If sppropriate, enter
the upplicable number of the contract or grant under which
the report was written.

8b, &, & 8d. PROJECT NUMBER: Enter the uppropriate
militery department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity, This number munt
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been

assigncd any other report numbers (either by the originator
or by th= sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any linv

itations nn further dissemination of the report, other than those

imposed by security classification, using standard statcments
such as:

(1) ‘‘Qualified requesters may obtain copies of this
report from DDC."’

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized.*’

(3) **U. S. Government agencies may obtain copics of
this report directly from DDC. Other qualified DDC
usera shall request through

n
.

(4) °‘*‘U. S. military agencies may obtair copies of this
teport directly from DDC. Other qualified users
shall request through

(5) ''All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay
ing for) the research end devclopment. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the bedy of the technical re-
port. If edditiona! space is required, 8 continuation sheet shall’
be attached.

It is highly desirable that the abstrect of classified repoits
be unclassified. Each paragraph of the abrtract shell end with
an indication of the military security clessification of the in-
formation in the paragraph, represented as (TS). (S). (C). or (U)

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 worde.

14. KEY WORDS: Key words arc technically mesningfu!l terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected 80 that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be us=d as key
words but will be followed by an indication of technical con-
text. The assignment of links, rales, and weights is optional.

IV ames N7

DD .%%% 1473 (BACK)

Unclassified

Security Classification





